a2 United States Patent
Hanappe

US009268389B2

US 9,268,389 B2
Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) REDUCING POWER CONSUMPTION ON A
PROCESSOR SYSTEM BY MASKING
ACTUAL PROCESSOR LOAD WITH
INSERTION OF DUMMY INSTRUCTIONS
(735)

Inventor: Peter Hanappe, Paris (FR)

(73)

")

Assignee: Sony Corporation, Tokyo (IP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 611 days.

1) 13/636,824

(22)

Appl. No.:

PCT Filed: Mar. 22,2011

(86) PCT No.:

§371 (),
(2), (4) Date:

PCT/EP2011/054355

Feb. 4,2013

(87) PCT Pub. No.: WO0O2011/117243

PCT Pub. Date: Sep. 29, 2011

Prior Publication Data

US 2013/0132754 Al May 23, 2013

(65)

(30) Foreign Application Priority Data

Mar. 23,2010 (EP) 10305286

(51) Int.CL
GOGF 1/32
GOGF 9/48
USS. CL

CPC

(2006.01)
(2006.01)
(52)
GO6F 1/3228 (2013.01); GO6F 1/32
(2013.01); GOGF 1/329 (2013.01); GO6F
9/4893 (2013.01); Y02B 60/144 (2013.01)
Field of Classification Search

CPC GOG6F 13/32; GOGF 1/3203; GOGF 1/3228;
GOGF 1/08
USPC 713/323

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

4,977,529 A * 12/1990 Greggcccoovvennnn. GO9B 9/00
376/245
5,475,847 A * 12/1995 Ikeda GOG6F 1/3215
700/14

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101379453 A 3/2009

CN 101539799 A 9/2009

WO WO 2007/103051 A2 9/2007
OTHER PUBLICATIONS

Office Action issued Jul. 22, 2013 in European Patent Application
No. 11710748.2.

(Continued)

Primary Examiner — Chun Cao

Assistant Examiner — Santosh R Poudel

(74) Attorney, Agent, or Firm — Oblon, McClelland, Maier
& Neustadt, L.L.P.

(57) ABSTRACT

Energy savings can be obtained by masking a computation-
ally-intensive task from a processor performance manage-
ment system which selects the processor performance state
based on the load on the processor (CPU). By preventing the
PPM system from reacting to the computational load the
application places on the processor, the time to complete
execution of the application increases but the energy used by
the application may be greatly reduced and thermal stress on
the CPU is also reduced (preventing noisy fans from operat-
ing). This approach makes it convenient to run a computa-
tionally intensive task as a background task. The masking can
be achieved by running the task in tiny bursts, with micro-
sleeps in between them, so that the average CPU load is low
over a time period that the PPM system uses for measuring
CPU activity/load.

17 Claims, 8 Drawing Sheets

Work Increment T = 166 CPU clocks

L U S R T

e

1 Lo
08}
-
£
~ oBL
o)
o
)
Loar
@
=
02 .
%
. i 1.
0 100 200 300 400

‘
500

2 L i L
600 700 800 900 1000 1100

Sleep Duration S {micro-seconds}

US 9,268,389 B2

Page 2
(56) References Cited 2008/0007222 Al* 1/2008 Nance GOIR 31/3693
320/128
U.S. PATENT DOCUMENTS 2008/0198950 Al* 82008 Suyama 375/340
2008/0307248 Al* 12/2008 Amanoetal. ... 713/600
5,887,178 A * 3/1999 Tsujimoto GO6F 1/3228 2009/0048804 Al* 22009 Gary ... GO6F 1/3203
713/322 702/176
5,887,179 A * 3/1999 Halahmi GO6F 1/3287 2009/0100437 Al* 4/2009 Coskunetal. ... 718/105
712/59.078 2010/0185882 Al* 7/2010 Arnoldetal. . . 713/320
6,219,796 Bl 4/2001 Bartley 2011/0040940 Al* 2/2011 Wellsetal. .. . 711/128
6,800,965 B1* 10/2004 TUINET .oovovvreeee.. HOLH 1/605 2011/0299317 Al* 12/2011 Shaefferetal. 365/106
307/128 2011/0307961 Al* 12/2011 de Perthuis GOGF 9/30145
6,834,386 B1* 12/2004 Douceur GOGF 9/4881 726/26
718/102 2013/0125133 Al* 5/2013 Schusterccccceoen. 718/105
6.848.054 B1* 1/2005 Watts. J&. wovvevvoiinn, GO6F 1/206 2014/0337648 Al* 11/2014 Ujibashi GOGF 1/324
o ' 307/34 713/322
N .
7,036,030 Bl 4/2006 Altmejd G06F7}/33/§§§ OTHER PUBLICATIONS
N .
7,765,343 Bl 7/2010 WelSSman GO6F7?Z§§ Anonymous, “HLT” Wikipedia, http://en.wikipedia.org/w/index.
7,814,485 B2* 10/2010 Morgan GO6F 1/3228 php?title=HLT &oldid=338320922, Jan. 17, 2010, 2 Pages.
713/323 “The annoying way that BOINC ‘throttles’,” http://www.spacekb.
7,917,789 B2 3/2011 Fenger et al. com/Uwe/Forum.aspx/seti2/1920/The-annoying-way-that-BOINC-
2003/0105983 Al* 6/2003 Brakmo GO6F 1/3203 throttles, Total 37 Pages, XP-002542532, (Nov. 20, 2007).
" 713/320 Jorden, “Setting Percentage of CPU Time, how does it work? (CPU
%882;8%2223 ﬁi* ggggg gwitoi(ol """"""""""" ;igg?g throttling),” http://boincfaq.mundayweb.com/index.
20050149932 AL* 7/2005 Hasink .. ‘GooFojsy Phprlanguageml&view 45
""""""""""" sessionID=calac42¢76¢3a: a0el ad4caade, Tota age,
asin Tisioo &sessionD=calacd2c76c3aa336a0¢bd 18addcaade, Total | Pag
2005/0278520 Al* 12/2005 Hirai etal.ooccooccorrrien 713/1 XP-002642533, (Apr. 16, 2010). _
2006/0015762 AL* 1/2006 Chit oo 713/340 Ir}ternatlonal Search Report Issued Jul. 1, 2011 in PCT/EP11/54355
2006/0080561 Al* 4/2006 Chaiken GOGF 1/3228 ~ Filed Mar. 22, 2011.
713/300 Combined Chinese Office Action and Search Report issued Dec. 2,
2006/0259799 Al1* 11/2006 Melpignano etal. 713/300 2014 in Patent Application No. 201180015576.X (with English lan-
2007/0136726 Al* 6/2007 Freeland GOGF 11/3428 guage translation).
718/100
2007/0162160 Al* 7/2007 Changetal. 700/25 * cited by examiner

U.S. Patent Feb. 23,2016 Sheet 1 of 8 US 9,268,389 B2

FIG.1(a)

100

~
6,

CPU Load (%}
o
o

N
(4]

1000

Time (seconds)

FIG.1(b)

2.54 .

1.6

08

CPU Freauencv (GHz)

0 500 1000 1500 2000
Time (seconds)

U.S. Patent Feb. 23,2016 Sheet 2 of 8 US 9,268,389 B2

FIG.2

2000

]
2%
I b

1500

¥

Faph
v

¢
B
I

h
+

Energy Increase over Idle
Consumption (Joules)
o
[
[
4
et
gt

500 .

O ¢ k] i i L H L i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Allowed Access to CPU, o

FIG.3

700 T H H v 7 H T T T
600+]
& 5004 ¥ 1
e
o ¥
3
S 400- \ :
<)
o %,
S 300f 1
0O 200t :
100} e :
0 s . .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Allowed Access to CPU, o

U.S. Patent

Feb. 23,2016 Sheet 3 of 8

FIG.4(a)

Extra Energy Used (Joules)

b
[
[
(@]

o)
S
o

3
@

400

US 9,268,389 B2

1 10

T (in units of 10° CPU ticks)

FIG.4(b)

Fraction of CPU time spent in lowest P state

100

0.8

0.6

0.4-

0.2

10
T (in units of 10° CPU ticks)

U.S. Patent Feb. 23,2016 Sheet 4 of 8 US 9,268,389 B2

FIG.5(a)

10000 vy r
¥ Sleep Duration S = 500 micro-seconds

8000]

H

6000 .

H
/
¢
ryd
!

4000

Total Energy (Joules)

2000| .

R S

0 : i . I
10000 100000 1e+06 1e+07

Work Increment T (CPU clock cycles)

FIG.5(b)

3000 — - S —
Sleep Duration S = 500 micro-seconds

T

2500 |

2000]

T

(seconds)

1500}]

1000]

Duration

500 | .

0 . "%””‘f"“*"*‘ b gt

10000 100000 18406 16407

Work Increment T (CPU clock cycles)

U.S. Patent Feb. 23,2016 Sheet 5 of 8 US 9,268,389 B2

FIG.5(c)

Sleep Duration § = 500 micro-seconds
1 g oo b b e e E
0.8 i b
T a‘
= \
- ;
5 0.6+ \
0. !
&) .
§» 0.4r \", N
2 a
© \
021 i\ % _
Q . : R — L . {‘\{\v&
10000 100000 1e+06 1e+07
Work Increment T (CPU clock cycles)
2000 r r
‘«§ Sleep Duration S = 500 micro-seconds
ko) 4
B & 1500F %)
5= Yy
3
> K
5 X
f4)) s 5,
© & N
= 1000r -
€3 % P
c & ¥
"';"’ t:j)} . . (ul
D C T L/
€S 500 s “
if] i m"‘*‘*«aww L i
0 : L
10000 100000 16406 1e+07

Work Increment T (CPU clock cycles)

U.S. Patent Feb. 23,2016 Sheet 6 of 8 US 9,268,389 B2

FIG.6(a)

4000 . y .

Work Increment T = 1e6 CPU clocks

3

-
I
4»**‘*

3500

T

3000 e
2500f ﬁi%l | :
2000f .=t ﬁ
1500: .

10001 4

Total Energy (Joules)
%
R]

500 .

O i i H i i] i i i H
0 100 200 300 400 500 600 700 800 900 1000 1100
Sleep Duration $ (micro-seconds)

FIG.6(b)

250 T H T T T T T T T H
Work Increment T = 1e6 CPU clocks
*r+»**’y***
A-’**’y
200 - *’*A’,,,A-"*’* .
At
— T -3
2 L
C I T/i j_
g 150+ K 1
) %’ i
< g an!
c L1
kel ﬂ b
E 100" ?/’f i “1
a EE
Ay»'
50+ &

0 i i i i i i 1 1 i
o 100 200 300 400 500 BOO 700 800 900 1000 1100
Sleep Duration S (micro-seconds)

U.S. Patent Feb. 23,2016 Sheet 7 of 8 US 9,268,389 B2

FIG.6(c)

H 1 T T L Y ¥ L3 ¥ ¥
! Work Increment T = 1e6 CPU clocks
ik i ¥ = oo e - E
fr Y
I T
ST
ol
0.8+ ! 1
© i
£
06t T .
:) {3 i
D_ :’ “‘ il i
O IRy
o PRI]
S 041 2R 1
9 ;k\ ¥
ke N
0.2+ / .
¥ { I
0 2'1% g : -’l L ! L 1 L 1 L f
0 100 200 300 400 500 600 700 800 900 1000 1100

Sleep Duration S (micro-seconds)

FIG.6(d)

1000 - = ‘},:i E
800,

600

Energy Increase over ldle
Consumption (Joules)
.
Q
=

200+ :
Work Increment T = 1e6 CPU clocks

i

4 4 i i i 3 L
0 100 200 300 400 500 600 700 800 900 1000 1100
Sleep Duration S (micro-seconds)

U.S. Patent

FIG.7

Feb. 23, 2016

Sheet 8 of 8

US 9,268,389 B2

600

500

400 -

300 F

Energy Increase over Idle
Consumption (Joules)
(3
s

i

Work Increment T = 1e6 CPU clocks

L L i

200

400 600 800

Sleep Duration S (micro-seconds)

1000

US 9,268,389 B2

1

REDUCING POWER CONSUMPTION ON A
PROCESSOR SYSTEM BY MASKING
ACTUAL PROCESSOR LOAD WITH
INSERTION OF DUMMY INSTRUCTIONS

BACKGROUND OF THE INVENTION

The present invention relates in general to the field of
energy efficiency in information technology, notably to
improving energy efficiency when processor performance
management (PPM), or dynamic frequency and voltage scal-
ing (DFVS) as it is also called, is employed. In particular, the
invention relates to a power saving technique that works by
reducing the effect on a power performance management
algorithm or system of a computational load that is associated
with a particular process (notably, a user application, system-
level service or “daemon™).

Nowadays processor performance management is widely
used in order to reduce the power consumption of computers
and other devices/apparatus (especially portable devices—
laptops, PDAs, mobile phones, etc.—which work using bat-
tery power for a large part of the time) containing a processor
(notably a central processing unit, CPU). In this document the
term “computing apparatus” shall be used as a general expres-
sion to designate devices/apparatus comprising a processor.

Modern processors are capable of functioning at a range of
different clock frequencies and processor core voltages
(Vee). Each combination of an operating frequency and an
operating voltage corresponds to a different standard of pro-
cessor performance and is often referred to as a “performance
state”, or an “operating point”, or a “P state” according to the
Advanced Configuration and Power Interface standard
(ACPI). Each performance state involves a different level of
power consumption: the power consumption goes up in a
linear fashion with CPU clock frequency and goes up with the
square of the operating voltage. In other words, the following
formula (1) is an approximation to how power consumption P
varies with CPU clock frequency f and operating voltage V:

P=CVf 45
where C is the processor capacitance.
As an example, Table 1 indicates the processor perfor-

mance states that are supported by the 1.6 GHz Intel Pen-
tium™ M processor.

TABLE 1
Frequency Voltage
1.6 GHz 1484V <High Performance Mode
14 GHz 1420V (highest power consumption)
1.2 GHz 1276V
1.0 GHz 1.164V
800 MHz 1.036V
600 MHz 0956V <Low Performance Mode

(lowest power consumption)

Broadly speaking, processor performance management
involves dynamically selecting a performance state for a pro-
cessor based on the conditions applicable to the system at the
time and/or based on a power management protocol which
may have been specified by the user. Typically, a high perfor-
mance state (highest possible operating frequency and volt-
age) will be selected when the percentage utilization of the
processor is high and a power-saving low performance state
(lowest possible operating frequency and voltage) will be
selected when the percentage utilization of the processor is
low, with intermediate states being selected in other circum-
stances.

10

15

20

25

30

35

40

45

50

55

60

65

2

The particular factors which influence the selection of pro-
cessor performance state can be multiple, and vary from one
system to another. Typical parameters which are taken into
account include, but are not limited to: the processor utiliza-
tion percentage (or processor “activity”), the user’s power
policy, the current battery level, and thermal conditions and
events. Moreover, some PPM algorithms base their selection
of processor performance state on predicted values of these
parameters for an upcoming time period.

PPM can be implemented in a variety of ways, making use
of features in the processor, BIOS and/or operating system.
Examples of well-known PPM systems include AMD’s pow-
erNow!™, ARM’s PowerWise Adaptive Voltage Scaling
(AVS) and Intelligent Energy Manager (IEM), and Intel’s
Enhanced SpeedStep™ technologies.

One way of decomposing a PPM system is to consider that
there is a control unit which decides on which processor
performance state should be selected for a given time period,
and a driver module which implements the desired setting of
the processor performance state (for example, by writing a
code into a register, internal to the processor, which identifies
the next target processor performance state—as in the Intel
SpeedStep™ system). In some cases the operating system
may need to refer to the BIOS in order to determine the
location of registers which hold the target processor perfor-
mance state and/or the actual processor performance state.
When the processor is instructed to change performance state,
typically the processor will identify the desired operating
voltage to an associated voltage regulator.

The present invention can be applied irrespective of the
particular technique that is used to instruct a desired change in
processor performance state and irrespective of the particular
technique that is employed to implement an instructed
change.

Often there will be a group of different power management
policies and the user can select which policy he wishes the
system to apply at a given time and/or can configure the
policy. For example, the Microsoft Windows 7™ operating
system specifies three power management policies (or
“power plans”) called, respectively, “Performance”, “Bal-
anced” and “Power Saver” and the user is allowed to custom-
ize these policies, for example, by specifying maximum and
minimum limits on processor utilization in a given policy.

In many cases the system will operate in a PPM mode in
which the load on the processor affects the performance state
that is selected for the processor.

A computer (or other device having data processing capa-
bilities) that is configured to implement a PPM policy which
selects the processor performance state taking the processor
activity into account will select a high performance processor
state (i.e. high operating frequency and high operating volt-
age—with concomitantly high power consumption) when-
ever a computationally-intensive task is being processed. In
general, the PPM module cannot distinguish between a high-
priority task which should, indeed, be processed rapidly and
atask which is non-urgent (i.e. where the user would tolerate
slower completion of the task—i.e. a lower processor perfor-
mance state—if this would lead to a reduction in power con-
sumption).

In this regard, consider what happens when a computer
user offers the resources of his system to a volunteer comput-
ing project, and his system is configured to implement a PPM
policy which selects a processor performance state based, at
least in part, on the computational load on the processor.

In volunteer computing, people contribute their computer
resources to a large, and most often scientific, computing
project. A well-known volunteer computing project is the

US 9,268,389 B2

3

climate modeling project run primarily by Oxford University
via the climateprediction.net website.

In order to be able to participate in a volunteer computing
project a user typically downloads a small application from a
server associated with the volunteer computing project and
installs this application on his computer. The application then
downloads a block of data, performs a computation using the
processor of the volunteered computer, uploads the result to
the server, downloads the next block of data, and so on.
Volunteer computing projects generally involve applications
that are computationally-intensive, i.e. requiring the proces-
sor to perform mainly mathematical operations. Such appli-
cations are often referred to as “CPU-bound” applications.

In the most common case, volunteer computing applica-
tions are configured so that they execute only when the com-
puter has been idle for a certain time, i.e. they run as a
screen-saver. In order to evaluate the power consumption
incurred in this kind of case (and others) a benchmark appli-
cation was written, and this benchmark application was
designed to perform a dummy computation so that it would
mimic the behaviour of a CPU-bound user application. The
benchmark application was run using the following appara-
tus: a Sony VAIO™ laptop (model PCG-Z1SP) using a 1500
MHz Intel Pentium™ M Banias processor featuring Speed-
Step™ technology, using a GNU/Linux operating system
with Linux kernel version 2.6.31 and configured so as to
select the processor’s performance state based on the percent-
age processor utilization.

When the benchmark application was run as a screen-saver
on the above-described apparatus, the processor utilization
(or processor load) was 100% during execution of the appli-
cation (because it is a computationally-intensive application)
and, accordingly, the PPM system selected the highest-per-
formance processor state available. In these conditions about
57 seconds were required to complete the computation and
roughly 1700 Joules of energy were used, making an average
power consumption of 30 Watts. If the user is deliberately
leaving his computer on purely so that a volunteer computing
application can use his resources then all of this power is
being consumed purely as a result of participation in the
volunteer computing project.

By way of contrast, it is also possible to run a volunteer
computing application (or other CPU-bound task) as a back-
ground task, for example while the user is using his computer
for routine office work.

FIG. 1 illustrates the typical pattern of CPU activity when
a user uses the above-mentioned laptop (configured as
described) for routine office work. FIG. 1(a) illustrates an
example of the typical pattern of variation in CPU load over
time and FIG. 1(b) shows how the CPU clock frequency
changes over the same time period under control of the PPM
system (which is configured to select a high-performance
processor mode when the CPU load is high but a low-perfor-
mance processor mode when the CPU load is low).

It will be seen from FIG. 1(a) that average CPU load is
low—generally below 20%—when the laptop is used for
typical office work. FIG. 1(b) shows that the CPU’s clock
frequency also stays low, with occasional spikes to a higher
frequency (for example, when the office application loads and
decompresses an image). The power consumption when the
laptop is used for routine office work is around 13 Watts
which is practically the same as when the laptop is idle (i.e.
CPU load close to zero).

When the benchmark application was run as a background
task while the user was engaged in routine office work on the
above-described test laptop configuration, the benchmark
application made processor utilization jump to 100%, leading

10

15

20

25

30

35

40

45

50

55

60

65

4

the PPM system to select a high-performance processor mode

for the entire period when the benchmark application is being

executed. The computation, once again, took about 57 sec-

onds and over this time period the average power was 30

Watts. However, in this case it is fair to say that only 17 Watts

“extra” power was being consumed over and above the power

that the user would have required anyway in order to perform

his routine office work (this represents a drop from 1700

Joules of energy used in the screen-saver case, to 969 Joules

in the case of running in the background).

Thus, running a computationally-intensive application (or,
more generally, a computationally-intensive task) as a back-
ground task while the user is engaged in using his computer is
more energy-efficient than running the application as a
screen-saver, but still involves expenditure of considerable
additional energy.

Moreover, when the CPU-bound task was run in the back-
ground, raising the CPU load from a relatively low level to
100%, this soon placed a thermal stress on the CPU and the
computer’s fans started turning at full speed. The machine’s
noise soon became disturbing to the user and would be hard to
tolerate for any extended period of time.

One approach thathas been tried in the context of volunteer
computing is to allow the user to restrict the fraction of time
that his computer resources are available to the volunteer
computing application. This functionality is provided by a
software package called BOINC (Berkeley Open Infrastruc-
ture for Network Computing), which is often employed to
deploy volunteer computing projects. If the user specifies that
his computer resources are to be available to the volunteer
computing project for less than 100% of the time then the
BOINC manager will intermittently request the operating
system to change the state of the application to “sleeping” so
as to reduce the average CPU usage to the fraction specified
by the user. For example, a user setting of 20% will lead the
BOINC manager to run the application for 2 seconds and then
“put the application to sleep” for 8 seconds on the assumption
that, this being a computationally-intensive application, dur-
ing the 2-second periods when the application runs the CPU
load is 100%. When the application sleeps the CPU load will
fall back to its idle level (or the level attributable to any other
processes being executed by the CPU).

This facility that BOINC provides for a user to restrict the
access that the volunteer computing application can have to
the CPU does not lead to a reduction in the energy consumed
by that application. This can be seen from the following:
let o be the user-setting of the allowed degree of CPU usage,

where O<a.<1;

P, is the power consumption when CPU load is 0% (the CPU
is idle);

P, o0 1s the power consumption when CPU load is 100%;

T, o0 1s the time that would be taken to perform the computa-
tion with CPU load at 100% and if the computation was
uninterrupted; and

T is the actual time taken to complete the computation (in-
cluding “sleep” periods).

The average power consumption should be P=aP,, +
(1-a)P,. However, the “extra” power consumption due to
running the volunteer computing application (over and above
the power used by the computer while idle) is only P=a(P; oo—
Py).

Because of the sleeps introduced by BOINC the computa-
tion time grows from T, ,,to T=T, ,,/a.. Thus, the total “extra”
energy consumed because of the running of the volunteer
computing application E=PxT becomes (P,y,-Py)xT o0,
which is exactly the same as would have been the case without
the “sleeps”.

US 9,268,389 B2

5

In fact, it has been found in practice that when a computa-
tionally-intensive application’s access to the CPU is
restricted in this way the total energy consumed actually goes
up. FIG. 2 shows how power consumption varied with the
value of the parameter o (representing the proportion of the
time the volunteer computing application has access to the
CPU) in a case where a modified version of the benchmark
application—adapted to reproduce the functionality provided
by BOINC—was run on the test laptop configuration. FIG. 3
shows how computation time varied with the value of the
parameter c. in these experiments.

It can be seen from FIG. 2 that for almost all values of o the
energy consumption is greater than for the case where there
are no sleeps (i.e. the case where a=1). Moreover, FIG. 3
shows that for all values of o less than one the duration of the
computation increases. In other words, using the facility pro-
vided by BOINC to restrict CPU usage appears to result
primarily in increased energy consumption and lengthening
of the time required to complete the computation.

Moreover, it has been found that when the parameter a is
set to a value greater than 0.2 in the BOINC preferences then
the thermal stress on the CPU brings the fans into operation
and the machine quickly becomes unbearably noisy.

It will be seen from the above that whether a volunteer
computing application (or other CPU-bound task, e.g. a user
application, a system-level service, a daemon in a multi-
tasking operating system environment, etc.) runs as a screen-
saver or as a background task there is a considerable extra
expenditure of energy involved in running this application.
Part of the reason for this significant energy usage resides in
the fact that execution of the volunteer computing application
involves a high percentage CPU utilization rate (at or
approaching 100%) and this leads the PPM system to select a
high-performance processor mode even though this applica-
tion does not truly require high performance from the proces-
sor (the user has no real need for the task to be run quickly—
he could tolerate an extension of the time that is required for
execution of this task to be completed).

Considered more generally, a PPM system which selects
processor performance state based, at last in part, on proces-
sor utilization, can consume power at a considerable rate even
in a case where some part of the processor load which
prompts the selection of a high-performance state was not, in
fact, urgent or high priority for the user.

Obviously, if the only tasks liable to be executed by a
processor are non-urgent then the user could select a power
management profile which sets the processor into a low-
performance/low power-consumption state atall times. How-
ever, this is not appropriate if the processor is going to be
faced with some tasks that are urgent and others which are not
urgent. In such circumstances the user is probably better off
leaving in place a PPM profile which takes the CPU load into
account when setting the processor performance state.

US 2009/0199019 describes a technique whereby a com-
puter system (notably its operating system) is configured so
that there is an explicit assignment of priority levels to differ-
ent workloads so that the PPM algorithm can base its selec-
tion of the processor performance state not just on the per-
centage processor utilization but also on the priority level of
the workload in question. However, in order for existing
computer systems (or other devices having data processing
capabilities) to be able to make use of this technique it would
be necessary to update the operating system on each system/
device. This is an impractical task given that numerous dif-

15

20

40

45

50

6

ferent types of operating systems (and different operating
system versions) are currently in use.

BRIEF SUMMARY OF THE INVENTION

The present invention proposes a diftferent approach for
enabling a relatively low-performance processor state to be
maintained in the case where the processor is faced with a task
which, though computationally intensive, is not urgent for the
user, i.e. a task for which he can tolerate a certain increase in
the time required for completion of execution. Instead of
tackling the problem at the level of the operating system, the
present invention tackles the problem at the level of the tasks
themselves, adapting tasks so that they are masked from the
PPM system.

More particularly, the present invention describes the
energy-consumption-reduction methods, the computer pro-
gram products, the compilers and the computing apparatus
defined in the claims appended hereto.

The techniques according to the present invention enable
energy savings to be made when a computationally-intensive,
but non-urgent task is run on a system employing a PPM
algorithm which selects processor performance state based,
at least in part, on the load on the CPU. The invention reduces
the effect on the PPM algorithm of the computational load
associated with execution of the task. In particular, the inven-
tion makes it more likely that the PPM system will maintain
a relatively lower performance processor state than would
have been the case if the PPM system had fully taken into
account the computational load on the CPU associated with
execution of the selected task. It can be considered that the
CPU load associated with execution of the selected task has
been fully or partially masked from the PPM system. This
masking can enable a task to be executed using only a fraction
of the energy that would normally have been required.

Moreover, the energy-saving techniques of the invention
provide the advantage of reducing the thermal stress on a
processor, reducing the amount of time it is necessary to run
a cooling fan (with a concomitant reduction in noise).

The energy-saving techniques of the present invention are
independent of the particular processor, operating system,
PPM system or device architecture being employed and can
be used with substantially any modern processor, operating
system and/or device architecture provided that the relevant
operating system and/or PPM system uses the CPU load as a
heuristic to determine the processor power state.

The energy-saving techniques of the present invention can
be applied even in the case of multi-core processors. If a task
that is employing the masking techniques of the invention is
being executed on a first processor core and happens to be
migrated to a different processor core then there may be a
short-term perturbation in the masking procedure but, at
worst, this leads to a temporary increase in CPU load which
soon abates.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present invention
will become clear from the following description of a pre-
ferred embodiment thereof, given by way of example not
limitation, in association with the accompanying drawings, in
which:

FIG. 1(a) is a graph illustrating CPU load and FIG. 1(5) is
a graph showing CPU clock frequency in the case where a
laptop is being used for routine office work;

FIG. 2 is a graph illustrating how the energy consumed
when a user application is run varies depending on a param-

US 9,268,389 B2

7

eter o (the proportion of the time the CPU is allowed to
execute the application according to options provided by the
BOINC software package);

FIG. 3 is a graph illustrating how the computation time
varies with the parameter o during the experiment of FIG. 2;

FIG. 4(a) is a graph illustrating how energy savings (when
running a benchmark application) vary with changing values
of parameters T and S;

FIG. 4(b) is a graph showing how the percentage of time a
processor stays in the lowest-power mode (when running the
benchmark application) varies with changing values of T and
S;

FIG. 5(a) illustrates how the total energy consumed run-
ning the benchmark application varied with the duration of an
active period T during experiments illustrating the efficacy of
the first preferred embodiment of the invention;

FIG. 5(b) illustrates how the time that was required in order
to complete execution of the benchmark application varied
with T in the experiments of FIG. 5(a);

FIG. 5(c) shows the fraction of the time that the CPU was
in low-power (idle) performance mode for different values of
T in the experiments of FIG. 5(a);

FIG. 5(d) illustrates how the extra energy consumption
attributable to execution of the benchmark application varied
with T in the experiments of FIG. 5(a);

FIG. 6(a) illustrates how the total energy consumed varied
with the duration of an interval S between active periods T
during experiments illustrating the efficacy of the first pre-
ferred embodiment of the invention;

FIG. 6(b) illustrates how the time that was required in order
to complete execution of a benchmark application varied with
S in the experiments of FIG. 6(a);

FIG. 6(c) shows the fraction of the time that the CPU was
in low-power (idle) performance mode for different values of
S in the experiments of FIG. 6(a);

FIG. 6(d) illustrates how the extra energy consumption
attributable to execution of the benchmark application varied
with S in the experiments of FIG. 6(a); and

FIG. 7 illustrates how the extra energy consumption attrib-
utable to execution of a climate model varied with the interval
S between active periods T.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

A first embodiment of the invention, which is presently
preferred, will now be described with reference to FIGS. 4 to
7.

The detailed heuristics used by a PPM system to determine
CPU load vary, notably from one type/version of operating
system to another. For example, it is claimed that the
Microsoft Windows 7™ operating system handles the
accounting of processor activity in a new manner which
enables greater accuracy when determining which perfor-
mance state is appropriate based on the current system activ-
ity.

The present invention can be applied irrespective of the
particular heuristics that a PPM system is using for evaluating
CPU utilization, and is based on the concept that energy
savings can be achieved while a PPM system is running
according to a profile which selects processor performance
state based at least in part on CPU utilization, by tricking the
PPM system so that it maintains a relatively lower perfor-
mance state for the processor even though the processor is
executing a task or process which is CPU-bound.

The invention is based on the finding that, in general, PPM
systems evaluate the CPU load at regular time intervals and

10

20

25

30

35

40

45

50

55

60

65

8

decide which processor performance state to select based on
the determined value for CPU load for a given time interval.
According to the present invention, the average processor
utilization associated with execution of a task is reduced over
the accounting time period that the PPM system applies when
determining CPU load, and so the PPM algorithm does not
“see” the task (or only “sees” it partially). In other words, the
computational load associated with execution of the task is
made to have a reduced effect on the processor performance
state selected by the PPM system.

In a first, preferred embodiment of the invention, the tech-
nique that is employed so that a task can reduce its CPU usage
over each accounting time period used, by the PPM system,
for evaluating CPU load is to arrange for the task to run over
very short time periods, with regular short intervals between
the active periods. By analogy with the approach used in
BOINC, in the first preferred embodiment of the invention it
could be considered that the task has “micro-sleeps” (i.e. tiny
sleeps, use of the word “micro” here does not limit the dura-
tion of these tiny sleeps to microseconds).

In the case of the first preferred embodiment of the present
invention the duration of the active periods and the intervals
between them are set so that the average CPU load caused by
the task over the PPM system’s accounting periods is rela-
tively low, and is unlikely to trigger selection of a higher
performance state for the processor, but this reduced average
CPU load is still non-zero, i.e. some progress is still being
made on the computation. Thus, unlike the sleeps in BOINC,
the micro-sleeps used in the first preferred embodiment of the
invention do procure a reduction in energy consumption.

Indeed, BOINC cannot produce the timing granularity that
is employed in the present invention. When the BOINC soft-
ware package is used to deploy a volunteer computing appli-
cation, that application must be compiled with a BOINC
library that implements a signal handler. During execution of
the application on the volunteered processor, the BOINC
manager runs as a separate process and sends the application
a signal at regular time intervals (using the inter-process
communication facility provided by the operating system).
When the signal handler receives the signal from the BOINC
manager it checks how much time has elapsed and puts the
application to sleep if necessary. This technique for putting
the application to sleep is not capable of producing active
periods and micro-sleeps of the short durations that are
involved in the present invention.

FIGS. 4 to 7 demonstrate the efficacy of the approach
according to the first preferred embodiment for obtaining
energy savings. The above-described benchmark application
was run on the test laptop configuration according to the
pseudo code below:

start = now ()
loop until work done
do some work
if (now() — start > T)
sleep (S)
start = now()
end if
end loop.

This pseudo code caused the benchmark application to access
the processor to perform a small amount of work during a
time period T, then to put itself to sleep during an interval S.
The values of T and S were varied so as to demonstrate the
effects of the first preferred embodiment of the invention.
When S=0 this amounts to the benchmark application
accessing the processor continuously, leading to an average

US 9,268,389 B2

9
CPU utilization of 100%, and a choice (by the PPM system)
of'ahigh-performance mode for the processor. This equates to
screen-saver or conventional background execution as
described above.

When both T and S are set to values that are large compared
to the PPM system’s accounting period, Pa (which is roughly
10 milliseconds in our example using GNU/Linux), then
there are some PPM accounting periods (during active peri-
ods T) where the CPU usage is 100%, and other PPM
accounting periods (during the sleeps S) where the CPU
usage is 0%. Accordingly, high performance mode is selected
during some ofthe time periods and low performance mode is
selected for others. This equates to the behaviour obtained
using the usage-restriction facility of BOINC, with no power
savings.

FIG. 4 illustrates the behaviour that was observed when T
and S were set to different values larger and smaller than the
accounting period Pa. FIG. 4(a) illustrates how energy usage
varied with the values of T and S and FIG. 4(b) illustrates the
effect that changing the T and S values had on the percentage
of time the processor spent in the lowest power performance
state.

Table 2 below lists the data points that are graphed in FIGS.

4(a) and 4(b)
TABLE 2
Fraction
of time Extra
Duration of T Duration of processorin energy
(No. CPU Duration of S computation lowest P used
ticks) (Microseconds) (seconds) state (Joules)
1000000 500 195.08 1 510.68
3162278 1581 188.166 0.994367 487.592
10000000 5000 138.008 0.228896 853.616
31622780 15810 121.149 0.246699 1091.573
100000000 50000 105.906 0.143248 1141.902

As can be seen from FIG. 1(a), when T was equal to or
greater than about 107 CPU ticks, which is roughly equal to
the accounting period Pa in this example, then the extra
energy required to run the benchmark application exceeded
the 969 Joules of energy required to run the application unin-
terrupted in the background. Similarly, FIG. 4(54) shows that
when T took values that were around 107 CPU ticks (~Pa)
then the processor did not spend much time in the perfor-
mance state that uses lowest power.

However, when T and S were set to smaller values inter-
esting behaviour was observed. Within a small range of val-
ues of S and T the average CPU load stayed below 100%
during the PPM accounting periods, and so the PPM system
did not increase the CPU performance state on behalf of the
benchmark application, but useful progress on the computa-
tion was still being achieved.

FIG. 5 shows the results that were observed in this experi-
ment when S was set to 500 microseconds and T was set to
different values in the range from 10° to 107 CPU ticks, T was
measured using the CPU time stamp counter that is provided
on Intel-compatible processors. This counter is incremented
every CPU clock tick and can be read using a single instruc-
tion without the intervention of the operating system.

FIG. 5(a) illustrates how the total energy that was con-
sumed during the experiment varied with the value of T; FIG.
5(b) illustrates how the time that was required in order to
complete execution of the benchmark application varied with
T; FIG. 5(c¢) shows the fraction of the time that the CPU was
in low-power (idle) performance mode for different values of

25

30

35

40

45

55

10

T; and FIG. 5(d) illustrates how the extra energy consump-
tion—attributable to execution of the benchmark applica-
tion—varied with T.

FIG. 5(d) shows a clear minimum in the additional power
consumption attributable to execution of the benchmark
application. This minimum occurred when T was set to 10°
CPU clock ticks: the machine was still in a low-performance
(low power/idle) mode yet useful work was still being done.
The computation time stretched to 190 seconds—i.e. a little
over 3 times the duration in the case of uninterrupted 100%
CPU usage (whether run as a screen-saver or in the back-
ground)—but the total extra energy consumption attributable
to running the benchmark application with micro-sleeps was
less than 50% of the energy required in the full-power case
where the benchmark application was run, uninterrupted, in
the background. Moreover, compared to the case described
above where the benchmark application was run uninter-
rupted in the background (at 100% CPU load) energy savings
were observed using the micro-sleeps approach for all
graphed values of T greater than 100000 CPU ticks. Although
not illustrated on the graph of FIG. 5, it will be understood
from FIGS. 4 and 5 that there is an upper limit on T, that is, T
should be set less than the duration of the accounting period
Pa, i.e. T<Pa, in order to ensure that the average CPU load
imposed by this task is less than 100% during each accounting
period.

FIG. 6 shows the results that were observed when T was set
to 10° CPU ticks and S was increased from 1 to 1000 micro-
seconds in increments of 25 microseconds. FIG. 6(a) illus-
trates how the total energy that was consumed during the
experiment varied with the value of S; FIG. 6(5) illustrates
how the time that was required in order to complete execution
of the benchmark application varied with S; FIG. 6(c) shows
the fraction of the time that the CPU was in low-power (idle)
performance mode for different values of S; and FIG. 6(d)
illustrates how the extra energy consumption—attributable to
execution of the benchmark application—varied with S.

FIG. 6 shows that for small values of the inactivity period
S, in the range from 1 to 500 microseconds, the PPM system
is confused and tends to flip the CPU from high-performance
to low-performance states and back again. Indeed, if S is too
small the operating system may replace the requested sleep
function by an active loop, leading to an assessment of 100%
CPU load. However, for inactivity periods S longer than 500
microseconds the behaviour stabilises, with the CPU being
kept in a low-performance/low-power state and the energy
consumption attributable to the execution of the benchmark
application kept low.

It can be seen from FIG. 6(d) that in this experiment energy
savings are obtained, compared to the case where the bench-
mark application runs in the background uninterrupted, for a
small range of values of S between about 90 and about 100
microseconds and then at all graphed values of S above about
130 microseconds (even at low values where the PPM system
is “confused” as described above). The lowest energy con-
sumption is obtained for values of S between 500 and 600
microseconds, although similar energy savings are obtained
even at greater values of S.

In theory, there is no upper limit on S; however the greater
the duration of the tiny sleeps the longer it will take to com-
plete the task of interest. Accordingly, in this particular
experiment an optimal trade-oft between energy saving and
duration of the computation involves setting the sleep dura-
tion S in the range of 500 to 600 microseconds.

If alower-than-optimum energy saving can be tolerated (as
well as some fan noise), then faster execution of a task can be
obtained by setting the value of S lower than the value which

US 9,268,389 B2

11

gives optimal energy-efficiency but sufficiently large that the
average CPU load over the accounting period Pa will still be
below 100%, e.g. in this experiment setting S between 90 and
100 microseconds or in the range from 130 to 500 microsec-
onds.

In practice, the particular ranges of values of the active
period T and of the inactivity period S that will provide
optimum energy savings will vary from one situation to
another dependent on the particular task and platform (pro-
cessor, operating system, PPM system) being considered.

In the above experiments the benchmark application could
be run for a power consumption of 15.3 Watts, this is only 2.3
watts above the machine’s “idle” power consumption (13
Watts), and equates to 440 Joules of energy consumed.
Although the computation takes about 3.3 times longer than
in the cases where the benchmark application is run continu-
ously, the above-described experiments show that the
approach according to the first preferred embodiment of the
invention enables 2.2 times less energy to be used than in the
case where the same computationally-intensive application is
run, uninterrupted, in the background and 3.8 times less than
in the case where the application is run as a screen-saver.

There are numerous different ways of achieving the inter-
mittent execution of a task in accordance with the first pre-
ferred embodiment of the invention, i.e. tiny periods of com-
putation interleaved with tiny intervals of sleep. In the case of
a user application or a system-level service (daemon), one
simple technique which does not require any change to the
original code consists in recompiling the application (or sys-
tem-level service) using special compilation options so that
every time the application (or service) invokes a function call
the elapsed clock cycles are verified and, when it is found that
the desired time T has elapsed, a tiny sleep (of duration S) is
introduced. This can be achieved, for example, by exploiting
profiling options available in many compilers and, in the
experiment described below, an adapted version of the
“mcount” profiling function available in the tools of the GNU
operating system was used so as to introduce a tiny sleep
every time a function call was invoked.

A second technique involves modifying the linear list of
low-level instructions (which represent the task to be
executed by the CPU) by insertion, at regular intervals in the
instruction list, of a special function that tests the current
value of T and which, when T reaches a desired value, puts the
program to sleep for the selected period S.

A third technique consists in executing the application
(system-level service, daemon, etc.) beforehand on a virtual
machine that emulates the native CPU. The virtual machine
can profile the code to find the CPU-intensive parts of the
program, and generate a new instruction stream that runs
natively (i.e. with the virtual layer) on the CPU and that has
additional instructions to put the application to sleep at the
selected intervals.

It is to be understood that the first preferred embodiment of
the present invention is not limited by reference to the three
techniques mentioned above: other suitable techniques will
readily occur to the person skilled in the art.

A state-of-the-art climate modeling application was re-
compiled according to the first of the three techniques men-
tioned above and run in the background using the above-
described test laptop configuration. FIG. 7 illustrates how the
energy consumption required by the re-compiled application
varied for different values of S (duration of sleeps), when T
(the duration of each tiny period of computation) was fixed at
105 cycles of the processor clock. As FIG. 7 shows, for the
optimal value of S (which was 700 microseconds in this case),
the climate model required 308 Joules to complete and took

10

15

20

25

30

35

40

45

50

55

60

65

12

82.3 seconds. By way of contrast, when the same climate
model was run on the test laptop configuration as a screen-
saver this completed in 25.8 seconds but required 782.704
Joules of energy. Thus, the energy consumption required to
execute the re-compiled application could be made 2.5 times
less than the energy required to execute the same application
as a screen-saver on the test laptop.

In the above-described experiments, different values of T
and S were explored without explicit knowledge of the dura-
tion of the accounting period Pa being used by the PPM
system. Indeed, the duration of the accounting period Pa can
vary dynamically, notably when a Linux operating system is
used (as in the test laptop configuration). When the tech-
niques according to the present invention are applied to the
design of a task, so that it can mask itself from a PPM system,
a number of different approaches can be used in order to set
appropriate values for T and S.

One approach consists in the software provider performing
experiments ahead of time so as to determine what values of
T and S provide good energy savings for the task in question
when executed using various combinations of popular CPUs
(or CPU families) and operating systems. The relevant values
can then be listed, e.g. in a look-up table or database, and the
task is then written or adapted so that is accesses the value that
is listed for the CPU or CPU family and operating system on
which it is trying to execute. This access can be provided
directly, e.g. by hard-coding the value list into the task itself,
or indirectly, e.g. by designing the task so that it fetches the
appropriate values of S and T from a particular location (this
could be a storage medium—CDROM, RAM, ROM, optical
disc, etc.—or a location accessed over a network, e.g. the
Internet, a LAN or WAN).

It is advantageous for the task to be designed so that it
adapts the initial values of S and T that it has retrieved from
the list, so as to optimize them. This can be achieved, for
example, by designing the task to use heuristics such as CPU
frequency to determine an appropriate adjustment to make to
the initial S and T values that were retrieved from the list.
Another technique consists in designing the task so that it can
run a small benchmark process which determines optimum
values of S and T starting from the initial retrieved values.

It has been found, in practice, that in many cases good
results can be achieved by setting the value of S to roughly
500 microseconds (when a Linux operating system is used) or
to 1000 microseconds (when a Windows™ operating system
is used), then fine-tuning the value of T.

In a modification of the first preferred embodiment of the
invention, it has been found advantageous to design the task
so that, during execution of the task by the processor, the task
adjusts the values of S and T in a dynamic manner, for
example in order to speed up completion of the task if it
becomes more urgent (at the price of limiting the energy
savings that can be achieved). This can be particularly useful
in applications where there is a deadline for obtaining
completion of a computation.

For example, in some volunteer computing applications
there is a deadline associated with each block of data that is
supplied to a volunteer and it is necessary for the processed
data to be returned to the server before the deadline expires.
When the modification of the first embodiment of the present
invention is applied to a volunteer computing application of
that type then, if the task determines that the current values of
T and S will result in completion of a given computation later
than the deadline associated with the relevant block of data,
then it can adjust the values of S and T so as to obtain faster

US 9,268,389 B2

13

completion of the task (in a very urgent case the value of S can
be set to zero so that the computation continues to completion
uninterrupted).

This functionality may be achieved in any convenient way.
For example:

If the deadline for completion of a task is expressed as D,
the time taken to complete the task with CPU load at 100% is
designated T, and the time required to complete execution
of the task with the CPU in low power mode is designated T,
and the fraction of the task that has been completed at a given
moment tis designated d (where 0=0<1), then the task may be
configured to make the following test at predetermined times
during execution:

at the predetermined moment t, check the time to comple-
tion in low-power mode (i.e. determine the value of (1-38)x
sz);

compare the time to completion in low power mode [i.e.
(1-8)xT,,] with the remaining time available before the dead-
line, i.e. compare with (D-t), allowing a safety margin of AT,
to determine whether or not there is sufficient time left to
complete the computation in low power mode; and

if [{(1-8)xT,,} +AT]<(D-t), then set S to zero, i.e. run the
task continuously from now on (even though this will likely
bring CPU load up to 100%, brining an end to the energy
savings).

Often it is not possible to guarantee that the duration of the
intervals S that will intervene between successive active peri-
ods when the task is executed in practice will conform to the
values set by the task. This is because the task may request a
sleep of a particular duration but the system may put the task
to sleep for a somewhat longer period. However, this will not
prevent the maintenance of a low-performance processor
state.

The general principle of the present invention, whereby a
task can be masked from a PPM system so as to make energy
savings, can be implemented in a variety of ways, some of
which exploit features specific to particular PPM systems and
algorithms.

For example, W0O2007/103051 proposes a PPM system in
which the performance state of a processor is selected not
only based on the CPU load but also taking into account a
parameter quantifying the extent to which a task being
executed is memory bound. In another example, US 2009/
0089598 proposes a PPM system in which processor perfor-
mance state is selected not only based on the CPU load but
also based, at least in part, on an assessment of when the
processor is stalled. According to these PPM systems, when a
task is considered to be memory bound, or the processor is
considered to be stalled during execution of a task, then a
lower-performance state is selected for the CPU. A second
embodiment of the present invention enables a task to mask
itself from these types of PPM system. This is achieved by
inserting dummy instructions into the task’s code, tricking the
feedback mechanisms of these PPM systems.

Any convenient dummy instructions may be inserted into
the task’s code to trick the feedback mechanisms of the
above-described types of PPM system into deducing that the
task is memory-bound. One example of a suitable dummy
instruction consists in an instruction requesting the CPU to
load data from a random (but valid) memory location into the
CPU register, without there being any computational need for
this data-load operation. While the CPU is loading the
requested data into the register it is not making real progress
on the task, so it can be considered that the task is, briefly,
asleep. The greater the quantity of data that is read from the

10

15

20

25

30

35

40

45

50

55

60

65

14

memory the longer the duration of this tiny sleep. Thus, the
amount of data to be loaded controls the duration of the tiny
sleep interval S.

In the second embodiment of the invention, changing the
instruction flow of the task does not require any support from
the operating system. Thus, as in the first embodiment, energy
savings can be achieved by action performed at the level of a
task, rather than action taken at the level of an operating
system.

In the second embodiment of the invention, the same con-
siderations apply when setting the duration of the active peri-
ods T and sleep intervals S as in the case of the first embodi-
ment and so, for brevity, those features are not repeated here.

Inthe above-described first and second embodiments of the
invention, it is assumed that even when a computationally-
intensive task is being executed in the background a low-
power/low-performance state of the CPU can be maintained
by reducing the average CPU load that this particular task
imposes on the CPU. However, the reduced CPU load being
imposed by the background task is additional to any CPU load
that is being imposed by other tasks that are being executed
simultaneously (e.g. a foreground task that the user is
engaged in). If these other tasks exert a CPU load of 100%
then the background task is not causing any extra energy use.
On the other hand, there may be situations where these other
tasks by themselves did not impose sufficient CPU load to
trigger use of a high-performance CPU state but the superpo-
sition of the background task does trigger the PPM system to
select a high-performance state. It will be understood that this
situation is extremely unlikely to hold true throughout the
entire time period when the background task is being
executed, so the first and second embodiments of the inven-
tion will produce useful energy savings. However, a third
embodiment of the invention allows this situation to be
avoided.

According to the third embodiment of the invention, a task
is configured to execute in short active periods, with tiny sleep
intervals in-between, using any of the methods described
above in relation to the first and second embodiments and the
task is further configured to change the values of S and T
adaptively, based on an assessment of the average CPU load,
so that the total load imposed by the load due to the current
task added to the load imposed by other tasks remains below
100% during accounting periods Pa of the PPM system. This
can be achieved by configuring the task to interrogate the
operating system for information regarding the average CPU
load and the amount of time the processor spends in a given
P-state.

In general, the invention according to the first, second and
third embodiments of the invention will find expression in
program code representing a task (user application, system-
level service, daemon, etc.) that has been designed, according
to the principles discussed above, so that it masks itself from
a PPM system by virtue of instructions that either form part of
the program code ab initio or that form part of the code as a
result of compilation of an earlier version of the task. Typi-
cally, this program code will be embodied as a computer
program product comprising the specially-adapted program
code recorded on a convenient physical medium (e.g.
CDROM, RAM, ROM, optical disc, tape, or other storage
medium). The program code may also be broadcast or trans-
mitted over a network (e.g. LAN, WAN, the Internet, etc.).

However, according to a fourth embodiment of the inven-
tion selected tasks can be masked from a PPM system by a
director application that is external to the task itself but which
acts to mask selected tasks from the PPM system by intro-
ducing micro-sleeps into those tasks when they run. This

US 9,268,389 B2

15

director application does not form part of the operating sys-
tem, it is an add-on that can, for example, be installed from a
storage medium, downloaded from the Internet., etc. Itisto be
understood that the director application can implement the
various features of the first to third embodiments that have
been described above, except where obvious incompatibili-
ties arise.

The invention has been described above with reference to
certain presently-preferred embodiments thereof. The skilled
person will readily understand that modifications and devel-
opments may be made in the preferred embodiments within
the scope of the present invention as defined in the accompa-
nying claims.

The invention has been described above in relation to
embodiments which mask a user application from a PPM
system. However, the same techniques can be applied to mask
processes other than user applications, notably system level
services (including printing, file-sharing, database services,
etc.) and daemons in Unix and other multi-tasking operating
systems, from a PPM system.

The invention has been described above with special ref-
erence to improving the energy efficiency of volunteer com-
puting applications. However, the invention is applicable
more widely to other tasks which are computationally inten-
sive but are not necessarily urgent (e.g. rendering of a fractal,
compression of video data after editing, video and audio
coding and decoding, and many more).

The various embodiments of the present invention can be
used in association with ancillary modules providing addi-
tional functionality. For example, in some cases a user inter-
face may be provided so as to interact with a task which is
masked from a PPM system using the techniques of the first to
fourth embodiments of the invention. The user interface may
allow the user to control various parameters of the masking
process, notably one or more of the following: the values that
are set for the duration of the active periods T and/or for the
duration of the tiny sleep interval S, the source that the task
should access in order to obtain suitable (initial) values for S
and T, the time taken for completion of execution of the task,
and the relative importance of energy saving compared to the
time required for execution of the task. The user interface may
allow the user to manually notify the task/masking process of
details of the CPU and/or operating system on which the task
is going to execute (e.g. identitying the CPU and operating
system, specifying the CPU clock frequency, etc.).

What is claimed is:

1. A method of reducing energy consumed by a processor
when executing a task in a background while a performance
state of the processor is being controlled by a processor per-
formance management (PPM) system that selects the perfor-
mance state by taking into account an assessment of a pro-
cessor load during an accounting period, the method of
reducing energy comprising steps of:

(a) causing the processor to execute a portion of the task

during an active period,

(b) after each active period, causing the processor to stop

executing the task for an interval, and

(c) repeatedly performing the steps (a) and (b) until the task

has been completed;

wherein durations of active periods and intervals are

selected based on the task to be performed so that execu-
tion of the task imposes an average load on the processor
that is less than 100% but greater than 0% during each
accounting period of the PPM system between a start
and an end of the execution of the task,

wherein the step (b) comprises configuring instruction

sequence of the task to include one or more dummy

10

15

20

25

30

35

40

45

50

55

60

16

instructions and causing the processor to execute the one
or more of said dummy instructions during said interval,
and

wherein said dummy instructions trick the PPM system

that the task is memory bound.

2. The method of reducing energy according to claim 1,
wherein the duration of each active period is less than a
duration of the accounting period of the PPM system.

3. The method of reducing energy according to claim 2,
wherein the task is configured so that, during execution, a
check is made of time elapsed during a current period of
execution and, when a predetermined duration has elapsed, a
request is made to put the task to sleep for said interval.

4. The method of reducing energy according to claim 1 or
2, wherein the step (b) comprises putting the task to sleep for
said interval.

5. The method of reducing energy according to claim 1,
wherein the task is configured so that, during execution, a
check is made of time elapsed during a current period of
execution and, when a predetermined duration has elapsed, a
request is made to put the task to sleep for said interval.

6. The method of reducing energy according to claim 5 or
3, wherein the task is configured so that said check of elapsed
time is made each time the task invokes a function call.

7. The method of reducing energy according to claim 1,
comprising a step of setting the durations of at least one of the
active period and the interval dependent on the processor and
an operating system being used to execute the task.

8. The method of reducing energy according to claim 1,
wherein the durations of at least one of the active period and
the interval is/are varied between the start and the end of the
execution of the task.

9. A non-transitory computer-readable storage medium
storing computer-readable instructions representing a task
adapted to be implemented by a processor, a performance
state of said processor being controlled by a processor per-
formance management (PPM) system that selects the perfor-
mance state for the processor by taking into account an
assessment of a processor load during an accounting period,
said computer-readable instructions, when executed by the
processor, cause said processor to execute a method compris-
ing:

causing portions of said task to be executed by the proces-

sor during respective active periods with, in-between
said active periods, intervals when the processor stops
executing said task, wherein

durations of the active periods and the intervals are selected

based on the task to be performed,
durations of the active periods and the intervals cause
execution of the task to impose an average load on the
processor that is less than 100% but greater than 0%
during each accounting period of the PPM system
between a start and an end of execution of the task,

aninstruction sequence of said task is configured to include
one or more dummy instructions,

the processor is caused to execute the one or more of said

dummy instructions during the intervals, and

said dummy instructions trick the PPM system that said

task is memory bound.

10. The non-transitory computer-readable storage medium
according to claim 9, further comprising:

causing the task to be executed during the active periods of

duration shorter than that of the accounting period.

11. A computing apparatus comprising a processor and
configured to implement processor performance manage-

US 9,268,389 B2

17

ment (PPM) of selecting a processor performance state by
taking into account an assessment of a processor load during
an accounting period,

wherein the computing apparatus is configured to execute

a selected task by repeatedly executing a portion of the
selected task during an active period and, after each
active period, stopping execution of the selected task for
an interval,

wherein durations of active periods and intervals are

selected based on the selected task to be performed so
that the execution of the selected task imposes an aver-
age load on the processor that is less than 100% but
greater than 0% during each accounting period ofa PPM
system between a start and an end of the execution of the
selected task,

wherein an instruction sequence of the selected task is

configured to include one or more dummy instructions,
the processor is caused to execute the one or more of said
dummy instructions during the interval, and

said dummy instructions trick the PPM system that said

task is memory bound.

12. The computing apparatus according to claim 11,
wherein the duration of the active periods is shorter than that
of the accounting period.

13. A non-transitory computer-readable storage medium
storing computer-readable instructions representing a task to
be executed on a processor, a processor performance state
being controlled by a processor performance management
(PPM) system that selects the processor performance state by
taking into account a processor load during an accounting
period, said computer-readable instructions, when executed
by the processor, cause the processor to perform steps of:

(a) running for an active period;

(b) after each active period (T), stopping running for an

interval; and

(c) repeating the steps (a) and (b) until execution of the task

is complete;

wherein durations of active periods and intervals are

selected based on the task to be performed,

wherein the durations of the active periods and the intervals

cause the execution of the task to impose an average load
on the processor that is less than 100% but greater than
0% during each accounting period of the PPM system
between a start and an end of the execution of the task,
wherein the step (b) comprises configuring instruction
sequence of the task to include one or more dummy

w

10

15

20

25

30

35

40

45

18

instructions and causing the processor to execute the one
or more of said dummy instructions during said interval,
and

wherein said dummy instructions trick the PPM system

that the task is memory bound.

14. The non-transitory computer-readable storage medium
according to claim 13, wherein the duration of the active
periods is shorter than that of the accounting period.

15. The non-transitory computer-readable storage medium
according to claim 13, further comprising steps of:

each time the task invokes a function call, verifying elapsed

clock cycles, and

when the verifying step shows that the task has been active

on the processor for said active period, putting the task to
sleep for said interval.

16. A non-transitory computer-readable storage medium
storing computer-readable instructions to control execution
of a task by a processor of a computing apparatus, a perfor-
mance state of the processor being controlled by a processor
performance management (PPM) system that selects the per-
formance state by taking into account a processor load during
an accounting period, said computer-readable instructions,
when executed by the processor, causes the processor to per-
form steps of:

(a) executing said task for an active period;

(b) after each active period, stopping execution of said task

for an interval; and

(c) repeating the steps (a) and (b) until the execution of the

task is complete;

wherein durations of active periods and intervals are

selected based on the task to be performed,
wherein the durations of the active periods and the intervals
cause the execution of the task to impose an average load
on the processor that is less than 100% but greater than
0% during each accounting period of the PPM system
between a start and an end of the execution of the task,

wherein the step (b) comprises configuring instruction
sequence of the task to include one or more dummy
instructions and causing the processor to execute the one
or more of said dummy instructions during said interval,
and

wherein said dummy instructions trick the PPM system

that the task is memory bound.

17. The non-transitory computer-readable storage medium
according to claim 16, wherein the duration of the active
periods is shorter than that of the accounting period.

#* #* #* #* #*

